Indian Statistical Institute, Bangalore

Mathematics of Computing

Mid Term Examination, March 2014 Max Marks:20; Weightage 20%, Max Time: 2 hrs

- 1) Consider L_0 as the language consisting of strings on the alphabet $\{a,b\}$ which are at least two long and have an *a* in the second last position: *e.g.*, the language contains "*bbab*" but neither "*aaba*" nor "*a*". Here is a regular expression *r* for the strings in $L_0 : r = (a/b)^* a(a/b)$.
 - a) Create an NFA from *r* for L_0 . (1)
 - b) Convert your NFA to a DFA (2)
 - c) Give a right linear grammar for L_0 . (1)
- 2) If L_a and L_b are regular then show that XOR(L_a , L_b), which is the language that contains strings in exactly one of the two languages, is regular.(1)
- 3) Show how to convert a given an NFA M_a for a regular language L to an NPDA M_p for L. (2)
- 4) Prove that one can construct a NPDA for an arbitrary CFL. Assume the CFL does not contain the empty string.(3)
- 5) Consider the language $L_l = \{a^n b^m c^n : n, m \ge 1\}$:
 - a) Is L_1 Regular? If it is, construct a right linear grammar for L_1 , if not use the pumping lemma to prove your claim. (3)
 - b) Is L_1 Context-Free? If it is, construct a CFG for L_1 , if not use the pumping lemma to prove your claim. (3)
- 6) Show the following language is not context free by using the pumping lemma for context free languages: $L_r = \{ww : w \text{ is a string on } \{a,b\}^*\}$. (4)